Int J Adv Manuf Technol
DOI 10.1007/s00170-015-7764-0

@ CrossMark

ORIGINAL ARTICLE

Optimization of AISI 1045 end milling using robust

parameter design

T.G. Brito' - A. P. Paiva' - T. I. Paula’ - D. N. Dalosto ' - J. R. Ferreira' - P. P. Balestrassi

Received: 10 March 2015 / Accepted: 27 August 2015
© Springer-Verlag London 2015

Abstract AISI 1045 steel end milling, which enables manu-
facturers to machine parts with low-cost tools, has been
gaining prominence in the industry. To ensure the quality of
the final products though, it is important to properly adjust the
process parameters so as to avoid premature tool wear while
providing good levels of productivity along with zero defects.
This study aims to optimize the end milling of AISI 1045
steel, using carbide inserts coated with titanium nitride
(TIN). The objective—to produce the best surface finishing
for machined parts—is achieved by identifying the optimal
combination of input parameters and output variables. While
the responses analyzed consist of surface roughness, Ra and
Rt, the study also considers how Ra and Rt are impacted by
the cutting fluid and tool wear during the process. The process
parameters analyzed include cutting speed (vc), feed per tooth
(fz), axial depth of cut (ap), and radial depth (ae). The noise
variables considered are tool wear (z;), cutting fluid concen-
tration (z»), and flow rate (z3). To obtain optimal results, 82
experiments of a combined response surface array are con-
ducted to collect data and analyze the effects of the parame-
ters. In such a design, noise factors are used to generate vari-
ation for the responses, allowing the estimation of a mean and
a variance equation for Ra and Rt. To optimize the process, a
weighted mean square error (MSE) approach is used to form a
set of optimal and non-dominated solutions through a Pareto
frontier. In this manner, depending on the weight assigned to
the mean or variance equation, the algorithm leads to a feasi-
ble solution. Theoretical and practical results obtained confirm
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the adequacy of this proposal; a minimal surface roughness is
achieved with the smallest possible influence from tool wear,
cutting fluid concentration, and flow rate.
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1 Introduction

Among the various machining processes adopted in real
manufacturing environments, one of the most fundamental
and commonly encountered for material removal operations
is the end milling process. In the end milling process, an im-
portant property in the evaluation of workpiece quality is the
surface roughness [1-8]. Although there is a great deal of
research on surface roughness modeling and predicting this
kind of process [1-8], few efforts have been made at assessing
the influence of noise factors on end milling process
performance.

An alternative strategy used to make such an assessment
involves design of experiments (DOE) and, in particular, ro-
bust parameter design (RPD) [9, 10]. RPD was developed to
promote the best levels of control factors capable of making
processes less sensitive to the actions of noise variables, of
improving the variability control, and of minimizing the bias
[11]. The RDP presented in this work facilitates the adaptive
control application in the end milling process and contributes
to computer-integrated manufacturing designs [11-13]. Orig-
inally developed following a crossed-array [10], RPD remains
controversial. The controversy springs from the mathematical
flaws and statistical inconsistencies stemming from the inabil-
ity of crossed arrays to assess the interaction between control
and noise variables [12—15].
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The main drawback of crossed arrays is the excessive num-
ber of experiments needed [10]. To surmount this obstacle,
Vining and Myers [9] and Box and Jones [10] proposed the
use of response surface methodology (RSM) with combined
arrays [14—17]. This experimental strategy allows the compu-
tation of noise-control interactions using a central composite
design (CCD) with embedded noise factors, generating the
mean and variance equation from the propagation-of-error
principle [11-14]. The general scheme of working out an
RPD-RSM problem consists of performing a CCD design
with the noise factors considered as control variables and
eliminating the axial points related to the noise factors from
the design [10]. Using an OLS or a WLS algorithm, a poly-
nomial surface for f{x, z) is estimated. Taking its partial deriv-
atives in terms of the noise factors, the response surfaces for
the mean yi(x) and variances” (x) are determined [14].

In terms of optimization, mean y(x) and variance5? (x) may
be treated as two objective functions that may be joined into a
global objective function F(x) using a weighted sum [12-25].
It is also possible to use the square deviation between the
mean and the target proposed for the objective function. In
both approaches, the global objective function must be mini-
mized. This global objective function is known as mean
square error (MSE) [20, 22-24]. Assuming that mean and
variance may be assigned different degrees of importance,
MSE becomes F(x)=w[u(x)—T;] *+(1-w)o?(x),0<w<1.
This objective function may be subjected to any constraint
g(x)<0. However, since a CCD is used to estimate the objec-
tive functions, a common choice for the constraint is the spher-
ical region in which the experiment was done, such asg(x)=
x'x<a?[24]. Minimizing the MSE ensures that the average
response is established as close as possible to its target, while
presenting minimal variability. Such optimization may be
written as follows [20-24]:

2 2
F(x):w[p(x)—ry] e )

2

Minimize
xef?
Subjectto :  g(x) = x'x<a
where F(x) is the MSE of the response y(x,z), j(x) and &°
(x) are the mean and variance models for y(x,z), 7, is the
target of response y(x,z), and x'x<a? is a spherical nonlinear
constraint denoting the experimental space.

2 Multi-response robust parameter optimization
based on combined arrays

A robust response surface model is a polynomial that involves
linear interactions and quadratic terms promoted by the vari-
ation of control parameters. This is in addition to the consid-
eration of noise effects and their interactions with the control
parameters, the effects of which may be estimated using a
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combined array [11-13]. The general model may be written
as Eq. 2):

=05 +Z Bixi +Z B +Z Zﬁuxlxj

i< j

k k r
+Z ’}/[Z[+Z Z 5,-jx,-zj+€ (2)
i=1 =l j=1

Assuming that noise variables are independent with zero mean
and varianceso? and the random error are uncorrelated, the
mean and variance models can be written as Egs. (3) and (4):

Eb(x.2) = /(x) ()
V.(x,2) z‘{z[ay“]}w @)

where k and r are the numbers of control and noise variables,
respectively.

In Eq. (4), aﬁi is equal to 1 and ¢”is within the variation
from an ANOVA of the full quadratic model ofj((x,z). Note,
however, that o”is a constant and cannot be reduced by the
optimization routine since it is independent of control and
noise parameters. Replacing the mean and variance functions
by their respective estimates obtained with the combined array
and neglecting the variance term o, the RPD problem may be
written as a multi-objective optimization such as the follow-
ing:

Mirxlgl;ize F(x) = w{E-[y(x,2)] y}
oy (x,2) 2H
1-w) |2 _— 5
o >HZ[ 2] 5
Subjectto : g(x) = x'x<a?

The solution of a multi-objective optimization problem is
usually associated with a Pareto frontier [26]. A Pareto frontier
is a set of solutions in which an improvement in one objective
can exist only if there is a worsening in at least one of the other
objectives. Therefore, each point of this border represents a
feasible solution. Hence, for any given pair of solutions, such
as vectors of values of the objective function, an improvement
in one of its components involves a worsening in another. The
Pareto frontier is built using the anchor points that define the
extremes of the border. The anchor points are obtained when
each objective is minimized independently and the line of
utopia, which describes the line connecting two extreme an-
chor points in bi-objective cases and, in multi-objective cases,
a plan that includes all the anchor points (hyperplane of
utopia).

It is important to note that a problem is considered multi-
objective convex if the feasible set X and functions are
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individual convex as well [27]. It is known that the set of
feasible solutions of a convex multi-objective problem is also
convex and that the Pareto frontier results in a convex curve.
When group X is not feasibly convex, or at least one of the
functions is not convex, the problem is considered not convex.

3 Numerical illustration

To accomplish its objective, this study carried out a set of 82
experiments on the end milling operation of AISI 1045 steel
(Fig. 1a). The tool used was a positive end mill, code R390-
025A25-11M with a 25-mm diameter, an entering angle of
xr=90°, and a medium step (Sandvik-Coromant). Three rect-
angular inserts were used (Fig. 2b) with an edge length of
11 mm each, code R390-11T308M-PM GC 1025 (Sandvik-
Coromant) with a tool overhang of 60 mm. The tool material
used was cemented carbide ISO P10 coated by the PVD pro-
cess with TiCN and TiN. The coating hardness was around
3000 HV3 and the substrate hardness 1650 HV3 with a grain
size smaller than 1 pm. The workpiece material was AISI
1045 steel with a hardness of approximately 180 HB. The
workpiece dimensions were rectangular blocks with a 100 x
100-mm square section and a length of 300 mm. All the mill-
ing experiments were carried out in a FADAL vertical ma-
chining center, model VMC 15, with maximum spindle rota-
tion of 7500 rpm and 15 kW of power in the main motor.
Following the experimental sequence of a combined array,
the researchers designed a CCD with k=7 variables (x;, x»,
X3, X4, Z1, Z2, and z3) and ten center points, deleting the axial
points related to the noise variables. Described in Tables 1 and
2 are the control and noise factors and respective adopted
levels.

The different noise conditions, furnished by a combination
of factors and levels described in Table 2, express in some

sense the possible variations that could occur during the end
milling operation. Such variations include tool flank wear (z;),
cutting fluid concentration (z5), and cutting fluid flow rate (z3).
The cutting fluid used in the experiments was synthetic oil
Quimatic MEII. The surface roughness values are expected
to suffer some kind of variation due to the action of the com-
bined noise factors. Therefore, the main objective of robust
parameter design (RPD) is to find the control parameter setup
capable of achieving a reduced surface roughness with mini-
mal variance, while mitigating the influence of noise factors
over the process performance.

The measurements of the tool flank wear (Vb) (z;) were
taken with an optical microscope (x40) using images acquired
by a coupled digital camera. The criteria adopted as the end of
tool life was a flank wear of approximately Vb=0.30 mm, as
shown in Fig. 2b.

The responses measured in the end milling process were
the arithmetic average surface roughness (Ra) and the maxi-
mum roughness height (Rt) (distance from highest peak to
lowest valley). In this work, both surface roughness metrics
were assessed using a Mitutoyo portable roughness meter,
model Surftest SJ 201, with a cutoff length of 0.8 mm
(Fig. lc).

This procedure resulted in 82 experiments, described in
Table 3. The two surface roughness metrics were measured
three times each, with each being in a different position of the
workpiece. The mean was computed after nine measurements.

4 Results and discussion

According to the discussion in Sect. 1, the mean and variance
models developed using the combined array were written only
in terms of control variables, although during the experimen-
tation, the noise factors were used. However, given that the

(b)

Fig. 1 a End milling process. b End milling tool. ¢ Surface roughness measure
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Fig. 2 a New tool. b Worn tool
(Vbax=0.30 mm)

variance equation takes into account the noise influence, the
adjustment of the control factors leads to a minimization of
process variability, ensuring the robustness of the end milling
process.

Figure 3 shows that most of the interactions between input
parameters were significant, representing an expressive non-
linearity in the surface roughness models.

According to these graphs, when both axial and radial depths
of cut are increased, the average surface roughness (Ra) increases
significantly. However, such a response surface is concave, sug-
gesting that the minimal values for average surface roughness are
obtained near the center point. A similar behavior is observed
with the interaction between feed per tooth and axial depth of cut.
Increasing both variables promotes higher values of Ra. The
same effect is observed between feed per tooth and cutting
speeds as well as feed per tooth and radial depth of cut. Such
behaviors were expected. After all, the increment in cutting pa-
rameter levels significantly increases the vibration in the shaft,
which increases the grooves made on the machined surface. The
high-speed cutting with increased feed per tooth made the tool
touch the sharp edge of the piece; early in the cut, the process was
already at a disadvantage. When the radial depth of cut is in-
creased and the cutting speed decreased, the insert moves with
the least speed. This forces more plastic deformation and rough-
ness damage. While the interaction effect on Rt behavior is sim-
ilar to that on Ra, they are not identical; the average values (Ra)
do not necessarily imply maximum peaks and valleys (Fig. 4).

One of the most important contributions of a combined
array is the possibility of measuring the interaction effects

(b)

between control and noise parameters. Though it is impossible
to control the behavior of noise factors, an optimization algo-
rithm may neutralize their influence by adjusting the levels of
control factors. Figure 5 shows the most significant interac-
tions of control and noise factors. It may be observed that for
high values of feed per tooth, the average surface roughness
will be larger with a worn-out tool than with a new tool. It may
also be noted that the average surface roughness (Ra) is less
with a new cutting edge than with a worn-out cutting edge.
This effect is the opposite for small feed rate values.

So, depending on the flank wear level, the surface rough-
ness will vary significantly along the range of feed rates.
Figure 6 shows that the most prominent noise-control interac-
tion in Rt is between axial depth of cut and flank tool wear.
Figures 5 and 6 highlight that noise-control interactions are
very important in modeling the expected values of surface
roughness properly mainly because they influence the average
values that promote a large prediction variance. Since these
interactions are significant, the variance equations—depen-
dent only on control factors—will correctly model the inter-
ference promoted by the noise factors; then, the minimization
of variance equation will lead to a steady-state process.

The introduction of noise factors in the design of control
factors generally causes an instability in the response surface
model, reducing R* (Adj.) and increasing the MSE. To avoid
such influence, the weighted least squares method (WLS) can
be used. Applying the WLS method to estimate the coefficients
of the response surfaces for Ra and Rt, the following models are
obtained:

Table 1 Control factors and

respective levels Parameters Unit Symbol Levels
—2.828 -1 0 +1 +2.828
Feed rate mm/tooth fz 0.010 0.100 0.150 0.200 0.290
Axial depth of cut mm ap 0.064 0.750 1.125 1.500 2.186
Cutting speed m/min ve 254 300 325 350 396
Radial depth of cut mm ae 12.260 15.000 16.500 18.000 20.740
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Table 2 Noise factors and respective levels

Table 3  Experimental design

Noise factors Unit  Symbol Levels Run fz ap ve  ae ) z, z3 Ra Rt
-1 0 +1 (Part I)

10100 0750 300 15000 0000 5 20 0297 2.097
Flank tool wear Mm z 0.000 0150 0.300 20200 0750 300 15000 0.000 5 1.807 7.587
Cutting fluid concentration %z, 5 0I5 30100 1500 300 15000 0.000 5 0.657 3.467
Cutting fluid flow rate Vmin  z 0 1020 40200 1.500 300 15000 0000 5 20 2.573 8957
50100 0750 350 15.000 0.000 5 0 0353 2.160
6 0200 0750 350 15.000 0.000 5 20 3.013 9.327
70100 1500 350 15000 0.000 5 20 0270 1973
Ra(x, z) = 0.689 + 0.898x; + 0.041x,-0.006x3-0.004x 8 0200 1.500 350 15000 0.000 5 2417 8743
+0.102z; + 0.002z; + 0.005z3 + 0.493x3 9 0.100 0750 300 18.000 0.000 5 0320 2.087
0,096 + 0.0102 + 006452 10 0200 0750 300 18.000 0.000 5 20 3.170 11.583
11 0100 1500 300 18000 0000 5 20 0280 1.690
+ 0.074x1x,—0.087x1.x3 + 0.030x7x4 120200 1500 300 18.000 0.000 5 0 2877 10.187
+ 0.048x,2,—0.086x,2; + 0.042x,z3 + 0.039x2x3 130100 0750 350 18.000 0.000 5 20 0270 2.027
140200 0750 350 18.000 0.000 5 3.030 11.197
+0.018x,x4 + 0.013x,21-0.073x,2,-0.012x,23 15 0100 1.500 350 18.000 0.000 5 0550 3340
+ 0.043x3x4 + 0.020x32;—0.034x32, 16 0200 1500 350 18.000 0.000 5 20 1520 7.043
+ —0.041x323—0.052x421—0.013x42—0.025x4 23 17 0.100 0750 300 15000 0300 5 0 0497 4.560
(5) 18 0200 0750 300 15000 0300 5 20 2770 10973
19 0100 1500 300 15000 0300 5 20 0383 2.707
Rt(x,z) = 4.719 + 3.170x; + 0.251x,—0.261x3 + 0.046x4 20 0200 1.500 300 15000 0300 5 0 3247 12473
4 0.877z; 4 0.0402,—0.049z3 + 1.039x 21 0.100 0750 350 15000 0300 5 20 0.760 4.647
5 5 220200 0750 350 15.000 0300 5 0.800 4.580
+0.176x; +0.173x + 0.498x1x,-0.225x1.x3 23 0100 1.500 350 15.000 0300 5 0.500  3.660
+0.233x1x4 4 0.310x12,-0.291x, 25 24 0200 1500 350 15000 0300 5 20 2.503 10.757
4 0.188x,23-0.020x2x3 -+ 0.164x,14—0.08Tx22, 25 0100 0750 300 18.000 0300 5 20 0397 2.877
26 0200 0750 300 18.000 0.300 5 1.063  6.007
+70.210x,2,70.127x223 + 0.181x3x4 27 0.100 1.500 300 18.000 0.300 5 0.367 2.007
+ 0.128x321—0.109x325 + 0.042x323 28 0200 1500 300 18.000 0300 5 20 2783 15330
L 0.158r,2,-0.016x32; + 01575423 29 0.100 0750 350 18.000 0300 5 0 0763 4217
30 0200 0750 350 18.000 0300 5 20 1437 7253
(6) 31 0100 1.500 350 18.000 0300 5 20 0383 3.137
Employing the propagation-of-error principle and taking 32 0200 1500 350 18000 0300 5 2960 11.610
the partial derivatives of Egs. (3) and (4), the respective mean 33 0100 0750 300 15.000 0.000 15 0.803  4.007
and variance equations can be written as follows: 34 0200 0750 300 15000 0.000 15 20 2.030 7213
35 0100 1.500 300 15000 0.000 15 20 0.537 4583

360200 1.500 300 15000 0000 15 0 2.110 9.117
E.[Ra(x,z)] = 0.689 + 0.898x| + 0.041x,-0.06]6x3-0.004x4 37 0100 0750 350 15.000 0.000 15 20 0920 4.480
++0.493x%+0.096x§+0.010x§+0.064xi 38 0200 0.750 350 15.000 0.000 15 1.743  7.157
T 0.074%,%, +—0.08Tx1x; 39 0.100 1.500 350 15.000 0.000 15 0290 2.043
40 0200 1500 350 15000 0000 15 20 0943 4.460
+ 0.030x1x4—0.039x2x3 + 0.018x2x4 41 0.100 0.750 300 18.000 0.000 15 20 0513 2973

+ 0.043x3x4 (Part IT)

7) 420200 0750 300 18.000 0.000 15 2.087 7.550
430100 1500 300 18.000 0.000 15 0430 2.823
oRa(x,z)]>  [0Ra(x,z)]> 440200 1500 300 18.000 0.000 15 20 2.557 10.570
Vz[Ra(X»Z)]:[ o ] [ a2 ] 45 0100 0750 350 18000 0000 15 0 0350 2457
460200 0750 350 18.000 0.000 15 20 1.700 6.507
N {6Ra(x7z)r+02 (8) 47 0.100 1500 350 18.000 0000 15 20 0617 3.057
Oz 48 0200 1500 350 18.000 0000 15 0 1747 8273
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Table 3 (continued)

Run fz ap ve ae z z; z3 Ra Rt

49 0.100 0.750 300
50 0.200 0.750 300
51 0.100 1.500 300
52 0.200 1.500 300
53 0.100 0.750 350
54 0.200 0.750 350
55 0.100 1.500 350
56 0.200 1.500 350
57 0.100 0.750 300
58 0.200 0.750 300
59 0.100 1.500 300
60 0.200 1.500 300
61 0.100 0.750 350
62 0.200 0.750 350
63 0.100 1.500 350
64 0.200 1.500 350
65 0.010 1.130 325
66 0.290 1.130 325
67 0.150 0.060 325
68 0.150 2.190 325
69 0.150 1.130 254
70 0.150 1.130 396
71 0.150 1.130 325
72 0.150 1.130 325
73 0.150 1.130 325
74 0.150 1.130 325
75 0.150 1.130 325
76 0.150 1.130 325
77 0.150 1.130 325
78 0.150 1.130 325
79 0.150 1.130 325
80 0.150 1.130 325
81 0.150 1.130 325
82 0.150 1.130 325

15.000
15.000
15.000
15.000
15.000
15.000
15.000
15.000
18.000
18.000
18.000
18.000
18.000
18.000
18.000
18.000
16.500
16.500
16.500
16.500
16.500
16.500
12.260
20.740
16.500
16.500
16.500
16.500
16.500
16.500
16.500
16.500
16.500
16.500

0300 15 20 0.823 4.690
0300 15 0 3.007 11.787
0300 15 0 0.643 5230
0300 15 20 2937 9.870
0300 15 0 0.803 4.997
0300 15 20 2220 9.797
0300 15 20 0463 2.793
0300 15 0 2203 9.823
0.300 15 0.820 5.343
0300 15 20 2.547 10.663
0300 15 20 0377 2.560
0300 15 0 2.193 8.853
0300 15 20 0.637 4.050
0.300 15 2247 9.590
0300 15 0 0.483 3.400
0300 15 20 2.887 11.327
0.150 10 10 0.100 0.820
0.150 10 10 2.440 10.760
0.150 10 10 0350 1910
0.150 10 10 1573 6.817
0.150 10 10 0.650 5.257
0.150 10 10 0.440 3413
0.150 10 10 0390 3.383
0.150 10 10 1.183 6.230
0.150 10 10 0.343 2.990
0.150 10 10 0.540 3.283
0.150 10 10 0.680 4.083
0.150 10 10 0.520 3.247
0.150 10 10 0.540 4.090
0.150 10 10 0323 2993
0.150 10 10 0.527 4.990
0.150 10 10 0.607 3.453
0.150 10 10 0.697 4.970
0.150 10 10 0.430 2.863

o?[Ra(x)] = (0.102 + 0.048x; + 0.013x;, + 0.020x3-0.052x,)>
+(0.002-0.858x,—0.073x,-0.034x3-0.013x4)°
+ (0.005 + 0.042x;—0.012x,-0.041x3-0.025x, )

+ 0.990
MSE(Ra)

9)
E.[Rt(x,2)] = 4.719 + 3.170x; + 0.251x,—0.261x3 + 0.046x4
4 1.039x3 + 0.176x3 4 0.173x3
+ 0.498x1x,—0.225x1x3 + 0.233x;x4—0.020x,x3

+ 0.164x5x4 + 0.181x3x4
(10)
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ORt(x,z) 2+ oRt(x,z)]*
0z, 0z

v Ritx.2)] = |
+ [%ZX;Z)T + 0 (11)

o?[Rt(x)] = (0.877 + 0.311x;-0870x, -+ 0.128x3-0.158x;)>
+(0.040-0.291x;-0.210x,~0.109x3-0.016x5 )
+ (~0.049 + 0.188x,-0.127x; + 0.042x3 + 0.157x;)°

+ 0.910
~—
MSE(Rt)

(12)

Equations (9) and (12) are composed of the square partial
derivatives of y(x,z) and the MSE associated with each model
accuracy. However, in the optimization, this term will not be
minimized since it is independent of the controllable parameters.
The graphs of Fig. 7 present the factorial plots for variance of Ra
and Rt according to the models established in Egs. (9) and (12).
These graphs show how control parameters affect the instability
of surface roughness, increasing its variance. It can be seen that
for both Ra and Rt, the smallest values of variance occurs for low
levels of feed per tooth (near to level —1, or 0.1 mm/tooth), small
values for cutting speed (vc), and large values of radial depth of
cut (ae). Larger values of axial depth of cut (ap) minimize the
variance of Rt. Most of these levels, as is discussed below, are
related to low levels of system vibration, thus indicating that it is
possible to minimize the variance of surface roughness by min-
imizing the level of vibration.

Since the mean and variance equations of the two re-
sponses of interest are estimated, the proposed optimization
procedure can be run. According to step x, an individual op-
timization of E_[Ra(x,z)] andE.[Rt(x,z)] is conducted,
obtaining as the respective optimal values of (g,=0.230 pum
and (g¢=1.795 um. These values are considered the targets
and are utilized in composing each MSE(x) function. After
individual optimization, one can obtain the values of MSE;
max(x) and MSE}(x)for both Ra and Rt. In both cases, the
utopia points lead to the payoff matrix of Table 4.

Applying the MSE method and carrying out iteratively suc-
cessive optimizations, we obtain the results found in Table 5.

The values presented in Table 5 were used to trace the
Pareto frontiers for surface roughness (Ra x Rt) and MSE
(MSE(Ra) x MSE(Rt)) as shown in Fig. 8. All points de-
scribed in Fig. 8 are feasible; i.e., each point is capable of
leading the process to an optimal condition—the lowest pos-
sible values for Ra and Rt with low variance—with different
degrees of importance. The 21 setups described in Table 5
were obtained using a specific weight varying between 0
and 1, with increments of 5 %. In addition, each Pareto point
falls within the region of interest, according to the constraintx-
Tx < o This may occur because there has been a convex
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Surface Plot of Ra vs ae; ap Surface Plot of Ra vs ap; fz
Hold Values Hold Values
fz 0,15 vc 309
vc 325 ae 18,1
z1 015 z1 0
z2 10 z2 5
z3 10 z3 0
20 3
Ra Ra °
1.5
20 ! 2
1.0
16 ae 0 1 ap
0 00
! 12 o1 0
ap 2 fz 02
Surface Plot of Ra vs vc; fz Surface Plot of Ra vs ae; fz
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ae 16,5 vce 325
z1 0,15 z1 0,15
? 2 10 2 10
z3 10 z3 10
2 2
fa Ra
! 1
o
240 0 12
02
o 320 02 16
fz ' 01 ae

Fig. 3 Effect of interactions on average surface roughness (pm)

problem, with at least one convex MSE function. The method 5 Confirmation runs

is mainly effective in the transition between optimization for

the first and last individual applied weight with increments of ~ The basic idea in robust design optimization concerns finding

5 %. a setup of controllable factors that are insensitive to the actions
Figures 8, 9, and 10 show the contour plots for surface  of the uncontrollable factors. To test this claim, it is first nec-

roughness means and variances for an optimal obtained from  essary to determine an adequate sample size for testing the

Eq. (5) with w=50 %. It is clear this point is feasible and  null hypothesis that the average values of Ra and Rt with the

respects all the constraints. presence of noise factors are equal to the average value

Surface Plot of Ra vs ae; vc Surface Plot of Ra vs v¢; ap

Hold
Values
fz 015

ae 16,5
z1 0,15

Ra

05
240

vc

Fig. 4 Effect of interaction between vc versus ae and vc versus ap
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Surface Plot of Ra: Interaction (ap*z2)
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Fig. 5 Interactions between control and noise variables for Ra

without noise factors. If HO is accepted, it means that, in this
case, the noise factor effects were neutralized by robust
setup. Selecting the optimal condition for w=50 %

to test, Xo_gs = [—1.373 0.771 —0.645 1.051] or,

Surface Plot of Rt: Interaction (z1*ae)
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16
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Surface Plot of Rt: Interaction (z2*ap)
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Fig. 6 Interactions between control and noise variables for Rt

@ Springer

Surface Plot of Ra: Interaction (fz*z1)
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Surface Plot of Ra: Interaction (fz*z3)

Hold Values
ap 1,414
vc 309
ae 181
z1 0,15
2 10

in uncoded units, an end milling setup of X;:O.SOOT =
[0.08 mm/rev 1414 mm 309 m/min 18.1 mm], the
optimal values of the solution vector keep the properties, sum-
marized in Table 6.

Surface Plot of Rt: Interaction (z1*ap)
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vc 325
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Fig. 7 Main effect plots for a Var

(Ra) and b Var (Rt) 0,08
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To test the effect of noise factors under the robust optimal
condition for w=50 %, the L9 Taguchi design will be used to
assess the influence of three noise factors with three levels. To
determine the number of runs (or replicates) that should be
carried out to test the neutralization of noise factor effects, the
differences that should be detected with the test will also be
considered. These differences were established based on the
distance between the two anchor points of the Pareto frontier
and the utopia and Nadir points for Ra and Rt, respectively.
These values are denoted in Table 6 as “delta frontier” and
“delta payoff.” Based on these differences and the respective
standard deviation values associated with the optimal point
chosen on the frontier and assuming a power of 80 % and a
significance level of 5 %, it is possible to obtain the power
curves described in Fig. 11. According to these power curves,
three replicates of the L9 Taguchi design are sufficient to
detect the proposed differences with a power larger than
98 %. It can be noted that an L9 Taguchi design with three
replicates is equivalent to the L27 design presented in Table 7.
Such confirmation tests are shown in Table 7.

It is possible to note that the mean values for Ra and Rt
obtained with the confirmation runs are very close to the predict-
ed ones, with the same occurring for the MSE values. In addition,

Table 4  Payoff matrices

Payoff matrix for Ra and Rt Payoff matrix for MSE; and MSE,
0.230 0.478 0.909 0.935
2.368 1.795 1.189 1.226

e

0

fz ap
15
1,0 \, /
0,5
2 A 1] 1 2 2 A 0 1 2 -

vc ae

Ses g

1 2 2 A4 0 1 2 -2

@

-1 0 1 2 2 - 0 1 2

ve ae

2 -1 0 1 2 -2 -1 0 1 2

(b)

observing the results of ANOVA in Tables 8 and 9, it is possible
to verify that none of the noise factors is significant (all P values
>(.05), demonstrating that the setup is really robust to the pres-
ence of noise. It can also be seen that this occurs for the two
segments of each three-factor levels of analysis. This means that
withx" 50 = [~1.373 0.771 —0.645 1.051], the re-
sponses Ra and Rt do not change significantly in the presence
of any combination of tool wear (z;), lubricant flow rate (z,), or
concentration of lubricant (z3). This is, for a variety of reasons, a
crucial conclusion.

First, tool wear is a natural consequence of the physical
process of removing material. In some respects, this is—since
its occurrence is unavoidable—a noise factor. As the tool per-
formance degrades with several machining passes, the optimal
setup is thus incapable of ensuring that the surface roughness
values remain the same. In the robust condition, however, tool
usage in the process performance is assured for a long time.
Second, since the lubricant is an oil-in-water emulsion, its
concentration (z,) can also be considered a noise factor, as
its value can substantially change over the time.

Third, the slight importance of the lubricant flow rate (z3)
suggests that the end milling process of AISI 1045 could,
without affecting the quality of the machined parts, be execut-
ed without any coolant or lubricant (or with scant amounts of
them). It is well known that lubricants generally improve ma-
chining performance and that, without them, it is sometimes
impossible to obtain an appropriate level of surface quality.
For this reason, minimum quantity of lubrication (MQL), dry
or semidry machining operations, and using very small
amounts of lubricants are often desired. But, the combination
of machined parts with a high level of surface quality along
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Table 5  Optimization results with weighted sums

Weights X1 X5 X3 X4 Ra Rt Var Ra Var Rt MSE, MSE,
0.000 —1.450 0.855 —0.347 1.022 0.446 1.977 0.910 1.184 0.957 1.217
0.050 —1.445 0.851 —-0.369 1.026 0.442 1.978 0.910 1.184 0.955 1.217
0.100 —1.438 0.846 -0.392 1.030 0.438 1.979 0.910 1.184 0.953 1.218
0.150 —1.432 0.840 -0.417 1.034 0.433 1.979 0.910 1.184 0.951 1.218
0.200 —1.425 0.833 —0.444 1.038 0.429 1.980 0.910 1.184 0.949 1.218
0.250 -1.418 0.826 -0.473 1.041 0.423 1.981 0.910 1.184 0.947 1.219
0.300 -1.410 0.817 -0.503 1.045 0.418 1.982 0.910 1.185 0.945 1.220
0.350 —1.401 0.808 —-0.536 1.047 0.412 1.983 0.909 1.185 0.943 1.221
0.400 —-1.393 0.797 —-0.570 1.049 0.406 1.985 0.909 1.186 0.940 1.222
0.450 —1.383 0.785 —0.606 1.051 0.399 1.987 0.909 1.187 0.938 1.224
0.500 -1.373 0.771 —0.645 1.051 0.392 1.989 0.909 1.189 0.935 1.226
0.550 -1.362 0.756 —0.685 1.050 0.384 1.991 0.909 1.191 0.933 1.229
0.600 —1.351 0.740 —0.728 1.048 0.376 1.994 0.909 1.193 0.931 1.232
0.650 —1.338 0.722 -0.773 1.044 0.368 1.998 0.909 1.195 0.928 1.236
0.700 —-1.325 0.702 -0.821 1.038 0.359 2.003 0.909 1.198 0.926 1.241
0.750 -1.309 0.630 -0.873 1.030 0.349 2.009 0.909 1.202 0.923 1.247
0.800 -1.292 0.656 -0.930 1.018 0.339 2.019 0.909 1.206 0.921 1.256
0.850 -1.270 0.630 -0.994 1.001 0.327 2.032 0.909 1.210 0.919 1.267
0.900 -1.242 0.601 -1.070 0.976 0314 2.055 0.909 1.216 0.916 1.283
0.950 —-1.193 0.571 -1.170 0.939 0.299 2.105 0.909 1.221 0914 1.317
1.000 -0.899 0.373 —-0.607 0.594 0.281 2.635 0.905 1.263 0.908 1.968

with the use of low levels of lubricants depends on having an
adequate level of machining parameters, something that can-
not be achieved without an optimization strategy. It should be
noted that, despite a very low lubricant flow rate or even in the
absence of lubricant, surface roughness quality remains in-
variable. This represents a gain since there has been a rise in

Fig. 8 Pareto frontiers for Ra
versus Rt and MSE(Ra) versus
MSE(RY)

@ Springer

environmental concerns regarding the disposal of lubricant
waste and its effects on human health. In fact, industries are
obligated to review their technologies and procedures related
to the consumption of these supplies.

Although the lubricant flow rate can be controlled, it is
noteworthy that it is not uniformly applied to the tool part

MSE(Ra)

MSE(Rt)
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Fig. 9 Overlaid contour plots of mean and variance for w=50 % in Pareto frontiers

set, implying that some regions of a tool are not well cooled,
promoting irregular or premature wear. In this sense then, the
lubrication can be considered a noise factor.

Therefore, to ensure the quality of surfaces machined in an
optimal setup, it is important to establish that an end milling
process that is not vulnerable to the influence of variations in
the lubricant flow rate, concentration, or tool wear is impor-
tant. If these factors were to be neglected, it would be difficult
to arrive at an optimal setup that could generate, over time,
parts with the predicted optimal outcome. In other words, it is
impossible to maintain an optimal surface roughness as a ma-
chining tool wears away or as the amount or concentration of
lubrication changes. Hence, these facts are basically the dif-
ference between an optimal and a robust design, where all
characteristics are controlled.

6 Discussion

The AISI 1045 steel end milling robust optimization led to a
finishing setup capable of minimizing surface roughness Ra
and Rt as well as minimizing their respective variances pro-
moted by noise factors. The optimum set point of the process
obtained by the optimization method [f=0.081 mm/dente;
ap=1.414 mm; ve=309 m/min; ac=18 mm] was able to mit-
igate the effects of noise due to a combination of physical
components of the milling process in question. There are some
physical explanations for this phenomenon. For example, the
lower feed per tooth (fz) minimizes the roughness of the part
because it promotes a geometric effect of the inserts on the tips
of peaks of the milled surface texture irregularities. The depth
of cut (ap) obtained, near the level (+1), allows the mill to
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Contour Plot of Rt vs ae; fz (W=50%)
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Fig. 10 Contour plots of Rt for w=50 %, with new tool (z;=0.00 mm)

work with the main cutting edge and not just the nose radius
(r=0.8 mm). This fact makes it easier to shear the workpiece
material and prevents the formation of a lateral flow of the
chip, which could harm the finish and increase the variance of
roughness [28, 29]. The radial depth of cut (ae) obtained, near
the level (+1) of DOE design, enables the mill to work with its
center within the workpiece, with a ratio ae/Dc of around
70 %. This ratio of radial depth with cutting diameter (Dc) is
considered optimal in terms of tool-workpiece engagement for
asymmetrical cut end milling, which causes it to be less prone
to the vibration process [28]. The smaller the vibration, the
lower the roughness. The cutting speed (vc) obtained, near to
level (—1), enables the mill to work on a smaller rotation. This
makes it less likely that a vibration is brought to the rotation
system of the machine tool and workpiece, since the machine
used in the tests has a life longer than 10 years.

Table 6 Results referent to Pareto frontier point for a weight of w=
50 %

fix) Mean Utopiapoint Deltapayoff Delta frontier Variance SD

Ra 0.392 0.230
Rt 1.989 1.795

0.248
0.573

0.165
0.658

0.009
0.199

0.096
0.446
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The mitigating effects of flow (z3) and cutting fluid con-
centration (z,) on the part roughness can be explained by the
milling operation conditions applied to parts of low hardness
carbon steel (180 HB) being machined in typical finishing
condition. In this condition, the specific power cut, which is
given as the ratio between the active force and the rate of
material removal, is relatively low, and thus, the thermal gra-
dient generated in the cutting process was not so high. Thus,
the variation of the concentration and flow rate of cutting fluid
over the adopted levels did not influence the expected value or
the variance of the workpiece roughness.

Last, the optimal setup promoted by RPD also neutralized
the effect of the flank tool wear (z;) over the surface rough-
ness. When employing a new cutting edge, it is possible to
achieve a better shear material, with low cut forces. Low cut
forces lead to low system vibration and, consequently, a low
level of surface roughness. The vibrations on the cutting tool
have a momentous influence for the surface quality of the
workpiece with respect to surface profile and roughness [4].
The results of Chen et al. [4] showed that the effects of feed
rate and cutting depth provide a reinforcement of the overall
vibration, giving rise to an unstable cutting process and, as a
result, the worst machined surface. They also claimed that
spindle speed and tool holder type affected the stability of
cutting tooltip during the cutting process. With a worn-out
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Fig. 11 Power and sample size calculation for confirmation runs

tool, the opposite effect occurs; however, the wear of second-
ary mill tool cutting edge generates a plane phase between the
mill and the workpiece. This plane phase has a finishing ef-
fect, eliminating most of the roughness peaks during the op-
eration and, in this way, reducing the surface roughness and
respective variation [28].

7 Conclusions

This paper has reported the successful use of robust parameter
optimization in the AISI 1045 end milling process using car-
bide inserts coated with titanium nitride (TIN). Here, RPD
was capable of reducing the amount of system vibration dur-
ing the machining process. In general, the lower the vibration
level, the better the part finishing and the smaller the variance
in the surface roughness profile. Among the several results
obtained, the following are worth highlighting.

* RPD indicates that a lower feed per tooth (fz) is adequate
to minimize the surface roughness because this allows the
inserts to work properly, reducing the peaks of the irregu-
larities on the milled surface.

* A large value of depth of cut (ap) allows the mill to work
with the main cutting edge and not just the nose radius (7=
0.8 mm). This fact makes it easier to shear the workpiece

Power
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material and prevents the formation of the chip’s lateral
flow, which could harm the finish and increase the vari-
ance of roughness.

A large radial depth of cut (ae) obtained with RPD enables
the mill to work with its center within the workpiece,
reducing the vibration.

The optimal setup produced an ae/Dc ratio of approxi-
mately 70 %. This ratio of radial depth with cutting diam-
eter (Dc) is considered optimal because it also reduces the
process vibration. RPD led to a small value of cutting
speed (ve=309 m/min). This speed enables the mill to
work on a smaller rotation, making an increase in vibra-
tion less likely.

The optimal values of the Pareto frontier suggested a
small power cut, which in turn is responsible for a low
thermal gradient generated in the cutting process.
Thus, the variation of the concentration and flow rate
of cutting fluid over the adopted levels influenced nei-
ther the expected value nor the variance of the work-
piece roughness.

The method proves that the process may be extremely
clean since it requires no refrigerant fluid.

The optimal setup promoted by RPD also neutralized the
effect of the flank tool wear (z;) over the surface rough-
ness because the balanced phenomena occurred with new
and worn milling tools.
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Table 7 L9 Taguchi design with three replicates (w=50 %)

Table 9  ANOVA for L9 Taguchi design (noise factors) for Rt

zi z; zz Ral Ra2 Ra3 Mean Rtl Rt2 Rt3 Mean Term Coefficient SE coefficient T P value
0 5 043 039 040 0407 223 216 1.76 2.050 Constant 2.362 0.061 39.004 0.001
0 5 046 035 037 0393 2.83 257 272 2707 z1 (0-15) —0.080 0.086 -0.932 0.450
0 5 0 051 035 046 0440 256 320 2.72 2.827 z1 (15-30) —-0.029 0.086 —0.342 0.765
0 10 10 036 048 039 0410 2.02 244 266 2373 25 (5-10) —0.060 0.086 —0.699 0.557
0 10 10 043 037 054 0447 235 228 2.12 2250 z5 (10-15) —0.109 0.086 -1.276 0.330
0 10 10 034 037 035 0353 224 190 234 2.160 z3 (0-10) 0.065 0.086 0.755 0.529
0 15 20 038 038 047 0410 1.81 2.13 2.86 2.267 z3 (10-20) 0.117 0.086 1.365 0.306
0 15 20 038 043 033 0380 1.50 246 2.17 2.043
0 15 20 035 043 051 0430 246 286 287 2.730
15 5 10 041 055 037 0443 263 237 252 2.507
15 5 10 034 026 027 0290 211 2.14 214 2130 °* Thewear ofsecondary tool cutting edge generates a plane
15 5 10 054 050 040 0480 2.00 254 198 2.173 phase between the mill and the Workpiece, eliminating
15 10 20 031 040 051 0407 222 228 257 2357 most of the roughness peaks during the operation and, in
15 10 20 035 031 039 0350 2.12 132 229 1910 this. way, reducing the surface roughness and respective
15 10 20 045 046 052 0477 228 273 298 2.663 variation. . . o
15 15 0 040 040 039 0397 235 238 221 2313 ° lgrorri a r(rila;hemancal pers¥§ctlve, the sta}tllstlcal mojels
eveloped for responses of interest are characterized as
15 15 047 036 046 0430 3.16 238 3.05 2.863 p ¢ p labili ith hich val R ad
15 15 040 045 033 0393 312 261 223 2653 expressions of great reliability, with high values o adj.
30 5 20 028 035 041 0347 253 219 277 2497 " "l}"lhe Pareto frontier presznted 21 feambﬁe solutfl{onsb that led
30 5 20 032 032 046 0367 139 223 240 2.007 I);Spmcgsg 2073 ranie 0 a(;’,erage ro}‘llg ne,ssh( a}i etweeg
30 5 20 036 027 028 0303 222 171 154 1.823 : anf] 0 “(linz g’en “flg cl’gt ¢ weight chosen an
30 10 0 036 048 039 0410 2.02 244 266 2373 ?Ege (;1 ) ; an | ) Hum dO; t'h imizati £
. ese 21 setups also allowed for the minimization of var-
30 10 0 043 037 054 0447 235 228 2.12 2250 . .
iance of both Ra and Rt, with ranges [0.005; 0.010] and
30 10 0 034 037 035 0353 224 190 234 2.160 .
30 15 10 039 045 036 0400 252 238 228 2.393 [0.194; 0.270], respectively.
30 15 10 0.38 0'32 0'37 0'357 2'32 2.46 2'19 2'323 *  For w=50 %, the optimal setup is [f=0.081 mm/tooth;
’ ’ ’ ’ ’ ’ ' ’ ap=1.414 mm; vce=309 m/min; ae=18 mm)], a setup that
30 15 10 035 046 042 0410 1.82 1.83 253 2.060 .- . .
was able to mitigate the effects of noise due to a combi-
Mean 0.403 Mean 2.362 . . oy .
nation of physical components of the milling process in
Predicted value 0.398  Predicted value 1.795 .
) ) question.
Variance 0.001  Variance 0.051 » The overlaid contour plots show that the feasible region is
MSE 0931 MSE 1.361 very narrow, showing the finding of robust solutions ade-
Predicted MSE 0.938 Predicted MSE 1.226

* New cutting edges promote better shear material with low
cut forces. Low cut forces lead to low system vibration
and, consequently, a low level of surface roughness.

Table 8 ANOVA for L9 Taguchi design (noise factors) for Ra

Term Coefficient SE coefficient T P value
Constant 0.403 0.010 38.835 0.001
z1 (0-15) 0.022 0.015 1.513 0.269
z1 (15-30) 0.004 0.015 0.277 0.808
2, (5-10) —-0.005 0.015 -0.353 0.758
2, (10-15) 0.003 0.015 0.177 0.876
z3 (0-10) 0.017 0.015 1.160 0.366
z3 (10-20) —0.004 0.015 —0.303 0.791

@ Springer

quate for the process to be no trivial task.

» The statistical analysis of confirmation runs showed that
the noise factors are neutralized, since all P values are less
than 5 %. It was thus really possible, as the theory gener-
ally indicates, to make the end milling process insensitive
to the influence of noise factors.
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